Bode Form

Consider a transfer function H(s) with real poles and zeros:

H(s)=K(s+z1)(s+z2)...(s+zm)(s+p1)(s+p2)...(s+pn)

This can be written in Bode form:

H(s)=K0(sz1+1)(sz2+1)...(szm+1)(sp1+1)(sp2+1)...(spn+1)

where K0 is the DC gain,

K0=Kz1z2...zmp1p2...pn

Bode Plots

Constant

Let H(s)=K0. Then,

20log|H(jω)|=20log|K0|
H(jω)={0ifK0>0πifK0<0

Bode Plot for 102:

20log|102|=40
102=210=0

Constant Bode plot

Bode Plot for 110:

20log|110|=20
110=0

Constant Bode plot

Zeros & Poles At Origin

Let H(s)=sq. Then,

20log|H(jω)|=20log|(jω)q|=20qlog|jω|=20qlog|ω|
(jω)q=qjω=π2q

Bode Plot for s2:

20log|(jω)2|=40log|ω|
(jω)2=π

Zero/pole at origin Bode plot

Bode Plot for s1:

20log|(jω)1|=20log|ω|
(jw)1=π2

Zero/pole at origin Bode plot

Real Zeros & Poles

Let H(s)=(sz+1)±1. Then,

20log|(jωz+1)±1|=±20log|jωz+1|=±20log1+(ωz)2{0ifω<<z±20log(ω)±20log(1z)ifω>>z

For convenience, we draw the magnitude as a linear transition of slope ±20 dB/decade starting at ω=z.

(jωz+1)±1=±tan1(ωz){0ifω<<z±π4ifω=z±π2ifω>>z

For convenience, we draw the phase as a linear transition starting at ω=0.1z and ending at ω=10z.

Bode Plot for (sz+1):

20log1+(ωz)2{0ifω<<z20log(ω)+20log(1z)ifω>>z
(jωz+1){0ifω<<zπ4ifω=zπ2ifω>>z

Real zeros and poles Bode plot

Bode Plot for (sz+1)1:

20log1+(ωz)2{0ifω<<z20log(ω)20log(1z)ifω>>z
(jωz+1)1{0ifω<<zπ4ifω=zπ2ifω>>z

Real zeros and poles Bode plot

Complex Zeros & Poles

Let H(s)=((sωn)2+2ζ(sωn)+1)±1. Then,

20log|((jωωn)2+2ζ(ωωn)j+1)±1|=±20log(1(ωωn2)2)+4ζ2(ωωn)2{0ifω<<ωn±40log(ω)40log(ωn)ifω>>ωn

For convenience, we draw the magnitude as a linear transition of slope ±40 dB/decade starting at ω=ωn.

((jωωn)2+2ζ(ωωn)j+1)±1=±tan1(2ζωωn1(ωωn)2){0ifω<<ωn±π2ifω=ωn±πifω>>ωn

Bode Plot for ((sωn)2+2ζ(sωn)+1):

20log|(jωωn)2+2ζ(ωωn)j+1|{0ifω<<ωn40log(ω)40log(ωn)ifω>>ωn
((jωωn)2+2ζ(ωωn)j+1)=tan1(2ζωωn1(ωωn)2){0ifω<<ωnπ2ifω=ωnπifω>>ωn

Complex Zeros & Poles Bode Plot

Bode Plot for ((sωn)2+2ζ(sωn)+1)1:

20log|((jωωn)2+2ζ(ωωn)j+1)1|{0ifω<<ωn40log(ω)+40log(ωn)ifω>>ωn
((jωωn)2+2ζ(ωωn)j+1)1=tan1(2ζωωn1(ωωn)2){0ifω<<ωnπ2ifω=ωnπifω>>ωn

Complex Zeros & Poles Bode Plot