Confidence Intervals

Definition

Given a statistical model {p(x|θ):θΘ} and 0α1, an interval statistic T(x)=[l(x),u(x)], where l(x) and u(x) are lower and upper in is a (1α) confidence interval for θi, where θi is a component of θ,

P{θiT(x)|θ}1α

z-Confidence Interval

Setup & Assumptions

Objective

Estimateμwith a(1α)confidence interval

Interval

[x¯zα/2σn,x¯+zα/2σn]

where zα/2 is the right critical value such that,

P{Zzα/2}=α/2
ParameterPythonR
zα/2scipy.stats.norm.ppf(1 - (abs(a) / 2), 0, 1)qnorm(1 - (abs(a) / 2), 0, 1)

z-Confidence Interval with Two Independent Samples

Setup & Assumptions

Objective

Estimateμxμywith a(1α)confidence interval

Interval

[x¯zα/2σx2n+σy2m,x¯+zα/2σx2n+σy2m]

where zα/2 is the right critical value such that,

P{Zzα/2}=α/2
ParameterPythonR
zα/2scipy.stats.norm.ppf(1 - (abs(a) / 2), 0, 1)qnorm(1 - (abs(a) / 2), 0, 1)

t-Confidence Interval

Setup & Assumptions

Objective

Estimateμwith a(1α)confidence interval

Interval

[x¯tα/2sn,x¯+tα/2sn]

where tα/2 is the right critical value such that,

P{Ttα/2}=α/2
ParameterPythonR
tα/2scipy.stats.t.ppf(1 - (abs(a) / 2), n - 1)qt(1 - (abs(a) / 2), n - 1)

t-Confidence Interval with Two Independent Samples

Setup & Assumptions

Objective

Estimateμxμywith a(1α)confidence interval

Interval

[x¯tα/2sx2n+sy2m,x¯+tα/2sx2n+sy2m]

where tα/2 is the right critical value such that,

P{Ttα/2}=α/2
ParameterPythonR
tα/2scipy.stats.t.ppf(1 - (abs(a) / 2), n - 1)qt(1 - (abs(a) / 2), n - 1)

χ2-Confidence Interval

Setup & Assumptions

Objective

Estimateσ2with a(1α)confidence interval

Interval

[(n1)s2cα/2,(n1)s2c1α/2]

where cα/2 and c1α/2 are the right critical values such that,

P{χ2cα/2}=α/2andP{χ2c1α/2}=1α/2

respectively.

ParameterPythonR
cα/2scipy.stats.t.chi2(1 - (abs(a) / 2), n - 1)qchisq(1 - (abs(a) / 2), n - 1)
c1α/2scipy.stats.t.chi2(abs(a), n - 1)qchisq(abs(a), n - 1)