Discrete Fourier Transforms

Definition

Let x[n] be a discrete-time signal. Then,

X[k]=n=0N1x[n]WNkn,0k<N

where WN=ej2πN and X[k],0k<N are the Discrete Fourier Transform coefficients of x[n].

Conversely,

x[n]=1Nk=0N1X[k]WNkn,0n<N

can be defined as the Inverse Discrete Fourier Transform to recover N samples of x[n].

Properties

Linearity

Time-Reversal Circular Symmetry

where x[nN]=nmodN, and,

x[nN]={x[0],n=0x[Nn],1n<N

Conjugation

Duality

Circular Time Shift

Circular Convolution

where,

(xNh)[n]=m=0N1h[m]x[nmN],0n<N

Circular Correlation

where,

rxy[l]=n=0N1x[n]y[nlN],0l<N

Frequency Shifting

Frequency Modulation

Windowing

Parseval's Theorem