Z-Transforms

Definition

Let x[n] be a discrete-time signal. Then,

Z{x[n]}=k=0x[k]zk

where Z{x[n]}=X(z) is the Z-Transform of x[n], assuming the sum converges.

Properties

Linearity

Time Advance

Time Delay

Multiplication by n

Multiplication by an

Folding

Convolution

Conjugation

Real & Imaginary Components

Initial Value Theorem

Final Value Theorem

Condition: x[n] must converge to a finite value as n.

Z-Transform Table

Signal x[n]Z-Transform X(z)Region of Convergence
δ[n]1All z
δk[n]zkz0,z
u[n]zz1|z|>1
αnu[n]zzα|z|>α
αnu[n1]zzα|z|<α
nαnu[n]αz(zα)2|z|>α
nαnu[n1]αz(zα)2|z|<α
u[n]sin(ω0n)zsin(ω0)z22zcos(ω0)+1|z|>1
u[n]cos(ω0n)z2zcos(ω0)z22zcos(ω0)+1|z|>1
anu[n]sin(ω0n)αzsin(ω0)z22αzcos(ω0)+α2|z|>α
anu[n]cos(ω0n)z2αzcos(ω0)z22αzcos(ω0)+α2|z|>α

Power Series

Consider a geometric progression with common ratio, ρ, where |ρ|<1. Then,

k=0ρk=11ρ

By taking the derivative, we can also derive:

k=0kρk=ρ(1ρ)2